If it's not what You are looking for type in the equation solver your own equation and let us solve it.
442=4.5t^2
We move all terms to the left:
442-(4.5t^2)=0
We get rid of parentheses
-4.5t^2+442=0
a = -4.5; b = 0; c = +442;
Δ = b2-4ac
Δ = 02-4·(-4.5)·442
Δ = 7956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7956}=\sqrt{36*221}=\sqrt{36}*\sqrt{221}=6\sqrt{221}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{221}}{2*-4.5}=\frac{0-6\sqrt{221}}{-9} =-\frac{6\sqrt{221}}{-9} =-\frac{2\sqrt{221}}{-3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{221}}{2*-4.5}=\frac{0+6\sqrt{221}}{-9} =\frac{6\sqrt{221}}{-9} =\frac{2\sqrt{221}}{-3} $
| 9.99-4.74/y=7.02 | | 444=4.9t^2 | | 25=2+98/y | | 11-2=2b-b | | X-22=3(x)+4 | | 22=8r-2 | | 2x-x+6=8 | | -109.6+184.3=t | | 187=6p-10 | | (3x+1)+(x+9)=180 | | 1/6x+1=1/5x | | -6x+2.5=-8x=3.7 | | 6+50/z=27 | | q/2-7=13 | | 2+8s=66 | | 20x+10x-4=2 | | 6(x)+2.75=14.75 | | 8=4q-3 | | 130/x=2 | | y=2(4)-9 | | 3y+2y=4+2 | | 7y+5=5+7y | | (2x-1)+(3x)=180 | | 7.2.x=28 | | 2-w/2=0 | | 12x^2-324=0 | | 4=x÷8+3 | | 5^-2x=25^2-2x | | 2b-b=12-8 | | 0.22x+1.6=3.2 | | 0.24x+1.6=3.2 | | 3(t-4)=-4 |